

Emoglobine instabili: aspetti di laboratorio

Dr. Massimo Maffei Laboratorio di Genetica Umana IRCCS Giannina Gaslini - Genova

CONGRESSO NAZIONALE SITE

Pontificia Università Urbaniana

Disclosures of Massimo Maffei

No conflict of interest to declare

Eziologia e Patogenesi:

Le **varianti instabili dell'emoglobina**(Hb) sono causate da mutazioni in uno dei geni codificanti le emoglobine fetali o adulte che includono i geni globinici alpha (HBA2 o HBA1), beta (HBB), gamma (HBG2 o HBG1) e delta (HBD). $\frac{1}{2}$

•Hb varianti/mutationi:

- ✓ Le varianti **sono generalmente missense mutations**, che esitano nella sostituzione di un singolo aminoacido nella catena proteica emoglobinica producendo un tetramero alterato.²
- ✓ Meno frequentemente, le varianti genomiche includono delezioni, sostituzioni aminoacidiche multiple, e mutazioni anti-terminazione che determinano l'allungamento della proteina.²
- ✓ Le varianti instabili possono anche derivare da un'alterata processazione post-traduzionale.²
- ✓ La modalità di trasmissione è principalmente autosomica dominante; frequentemente sono state riportate mutazioni de novo mentre sono rari i casi di omozigosi e composti eterozigoti. 1,3
- ✓ La vera incidenza delle emoglobine instabili non è nota, ma il tasso medio di mutazione de novo è calcolato 1:1.000.000 di persone. ⁴

^{1.}Gallagher PG. Diagnosis and management of rare congenital nonimmune hemolytic disease. Hematology Am Soc Hematol Educ Program. 2015;2015:392-9.

^{2.}Thom CS, Dickson CF, Gell DA, Weiss MJ. Hemoglobin variants: biochemical properties and clinical correlates. Cold Spring Harb Perspect Med. 2013 Mar 1;3(3):a011858.

^{3.}Risinger M, Emberesh M, Kalfa TA. Rare Hereditary Hemolytic Anemias: Diagnostic Approach and Considerations in Management. Hematol Oncol Clin North Am. 2019 Jun;33(3):373-392.

^{4.(}Baltimore) 1989 Sep;68(5):309)

Mutazioni delle catene globiniche → alterano la struttura e le proprietà biochimiche dell'Hb

- stabilità
- solubilità
- precipitazione intracellulare

Heinz bodies = precipitati emoglobinici intracellulari

- aggregati che si legano alla membrana eritrocitaria (Banda3)
- deformabilità membrana
- •↑ permeabilità
- durata di vita dei globuli rossi → manifestazioni cliniche con sintomatologia da emolisi lieve fino ad emolisi severa.

Catene beta vs. alfa

- •Mutazioni della **beta-globina** hanno effetti più marcati (2 geni vs. 4 geni alfa; maggiore quota di Hb anomala)
- •Clinicamente rilevanti soprattutto nelle **forme di beta-globina** → anemia emolitica precoce nell'infanzia (↓ HbF, ↑ HbA mutata)

Mutazioni meno comuni

- •γ-globina → anemia emolitica transitoria nel neonato (scompare entro 3–6 mesi, sostituzione HbF con HbA)
- •δ-globina → impatto clinico minimo (HbA₂ poco rappresentata)

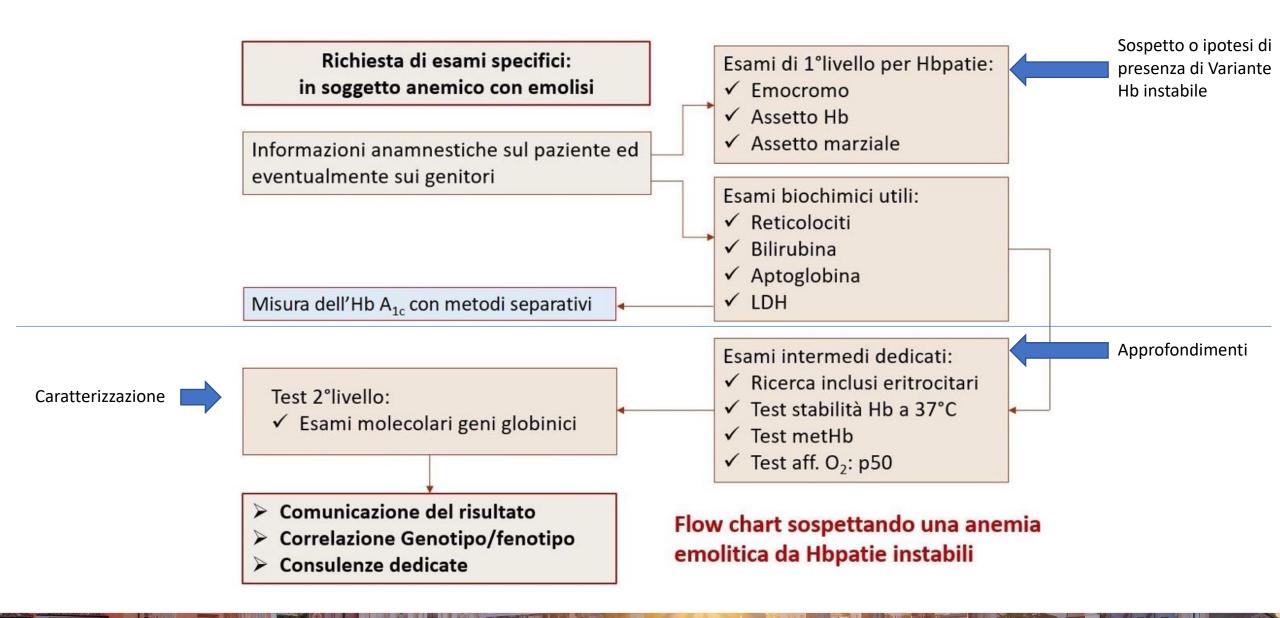
Meccanismi di instabilità

- •Difetti nel ripiegamento delle subunità
- Alterazioni interazioni eme-globina
- Problemi di dimerizzazione/tetramerizzazione
- •Interferenza con proteina stabilizzante alfa-Hb (AHSP : Alpha-hemoglobin-stabilizing protein)
- Il 75% dell'Hb è alfa-elicoidale e la struttura è particolarmente suscettibile alle sostituzioni di prolina (Su HbVar: 59 su 160 instabili). Es:
 - •Hb Brockton (HBB:c.415G>C (p.Ala138Pro)): sostituzione di prolina destabilizza la struttura → aggregazione, emolisi
 - •Hb Genova (HBB:c.86T>C (p.Leu28Pro))
 - •Hb Duarte (HBB:c.187G>C (p.Ala62Pro))

Database of Human Hemoglobin Variants and Thalassemia Mutations

Query	Count of results	Button to view results
Total entries in database	1907	View summary table
Total hemoglobin variant entries	1462	View summary table
Total thalassemia entries	545	View summary table
Total entries in both variant and thalassemia categories	69	View summary table
Variants with compound variants	325	View summary table
Entries involving the alpha1 gene	373	View summary table
Entries involving the alpha2 gene	471	View summary table
Entries involving the beta gene	972	View summary table
Entries involving the delta gene	145	View summary table
Entries involving the Agamma gene	65	View summary table
Entries involving the Ggamma gene	86	View summary table
Entries with a fusion gene mutation	11	View summary table
Entries with an insertion mutation	90	View summary table
Entries with a substitution mutation	1542	View summary table
Entries with a deletion mutation	249	View summary table
Hemoglobins with high oxygen affinity	103	View summary table
Hemoglobins with low oxygen affinity	48	View summary table
Unstable hemoglobins	160	View summary table
Methemoglobins	15	View summary table

Circa il 10% delle varianti descritte è definita instabile, ma si prevede che la percentuale reale sia il doppio.


HBB n° 122HBA2 n° 30HBA1 n° 7✓ HBG2 n° 1

Le **HBD** possono solo essere ipotizzate instabili per analogia

Esempio:

Hb Moscva instabile HBB:c.74G>A (pGly24Asp)

Hb-A₂ Victoria presumibilmente instabile HBD:c.74G>A (pGly24Asp)

1° LIVELLO: caratteristiche eritrocitarie, emoglobiniche e biochimiche

Indici eritrocitari:

Eritrociti (RBC) Normali/diminuiti

Emoglobina (Hb) Generalmente ridotta

Ematocrito (HCT) Normale/ridotto

Volume Cellulare Medio (MCV)

Non significativamente alterato in assenza di talassemie associate

Contenuto Cellulare Medio (MCH) Normale/ridotto

Morfologia eritrocitaria Normale o poco alterata, sferociti assenti, sporadica poichilocitosi

Assetto Hb:

Valutazione quali-quantitativa dell'HbA₂ Normale nelle α e normale/aumentata nelle β instabili

Valutazione quali-quantitativa dell'HbF Poco presente nell'adulto. Risulta rallentato lo switch nei neonati

Valutazione quali-quantitativa di varianti (HbX) In molti casi HbX non evidenziate dai metodi separativi in uso

Indicatori di emolisi:

Reticolociti Aumentati/normali Fortemente diminuita

Bilirubina Bilirubina indiretta aumentata

Lattato deidrogenasi Aumentata

Assetto marziale:

Ferro Normale/ aumentato
Ferritina Normale/aumentata
Saturazione della transferrina Normale/diminuita

In laboratorio:

- ✓ Vengono eseguiti test per misurare l'eventuale emoglobina libera nel plasma, risalire alla presenza aumentata di globuli rossi immaturi e di prodotti della abnorme denaturazione dell'emoglobina.
- ✓ le emoglobine instabili vengono riconosciute principalmente sottoponendo l'emoglobina anomala o sospettata tale, ad uno stress a cui l'emoglobina normale è in grado di resistere (test di Carrel e Grimes).
- ✓ Si esegue la caratterizzazione del difetto genetico che ha causato la produzione di emoglobina anomala e di eventuali altri difetti genetici che possono contribuire al fenotipo clinico.

Confronti tra instabilità strutturale (Tipo 1-4) e talassemia (Tipo 0)

Classification of the average behaviors and summary of the characteristics of unstable Hb variants of β chains, in heterozygosity, in relation to clinical presentation and "in vitro" instability. Comparison with classic thalassemic β defects

Class	Cause	Anemia	Properties "in vitro"	Clinical phenotype
1	The polypeptide chain is so unstable that it denatures immediately after synthesis ("hyper-unstable")	Mild or marked anemia	Negative	Thalassemic and/or hemolytic phenotype. It is particularly marked when variant Hb is associated with classic β thalassemic defects
2	The polypeptide chain is formed, is constantly destroyed over time, and thus results in reduced quantities	Chronic hemolytic anemia, greatly reduced erythrocyte survival	Positive (+++/++)	Sporadic transfusions may be necessary even in the heterozygous state
3	The Hb variant forms and is stable but denatures only upon oxidative stress or high fever	Acute hemolysis with anemia during hemolytic episodes	Positive (++)	Usually no transfusion is required. "Intermediate-marked" phenotype when the variant is associated with β thalassemic defects
4	Variant Hb is formed in normal or variably reduced amounts, in some cases offset by erythrocytosis present. Denaturation with oxidizing substances	Mild anemia	Positive (++/+)	"Intermediate-light" phenotype when variant is associated with $\boldsymbol{\beta}$ thalassemias
0	β Thalassemias: β globin gene does not allow polypeptide chain synthesis (β^0) or synthesis occurs only partially (β^+)	Mild anemia, not significant in heterozygosity	Negative	Thalassemia phenotype In heterozygous or homozygous compounds: NTDT ^(a) or TDT ^(b)

Esempi:

Hb Cagliari (HBB)

Hb Geneve (HBB)

Hb Brescia (HBB)

Hb Genova (HBB), Hb Torino (HBA2),

Hb Contaldo (HBA1)

Hb Köln (HBB)

Questa è la variante instabile beta più frequentemente riscontrata in Europa

Hb Zurigo (HBB) stesso res. di HbM Saskatoon

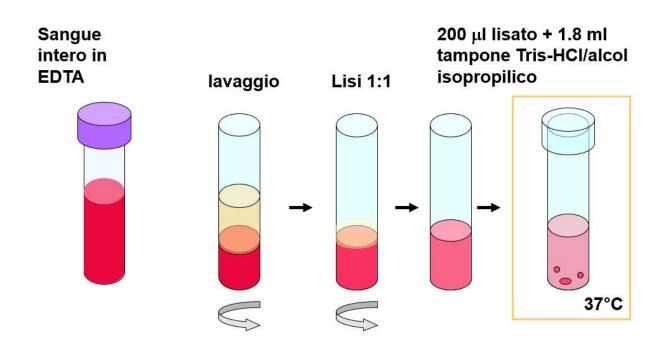
aa63His>Arg

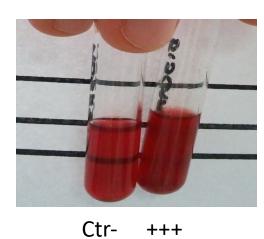
aa63His>Tyr

Hb Belfast (HBB)

Hb Hasharon (HBA2)

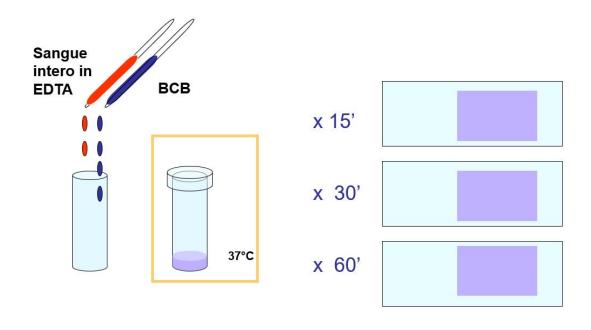
Questa è la variante instabile alfa più frequentemente riscontrata in Europa

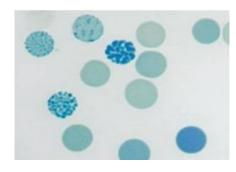

Cod39 (β0) (HBB) IVSI-6 (β+) (HBB)


a) (NTDT) Non-transfusion-dependent thalassemia b) (TDT) Transfusion-dependent-thalassemia

G.Barberio, G.Ivaldi. Varianti instabili dell'emoglobina: una sfida per il Laboratorio? biochimica clinica. Pubblicato online il: 15.12.2021, Rassegne. DOI: 10.19186/BC 2022.001

Test di termolabilità a 37°C secondo Carrell

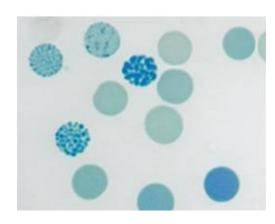

(Carrell RW, Kay R. A simple method for the detection of unstable haemoglobins. Br.J. Haematol 1972)



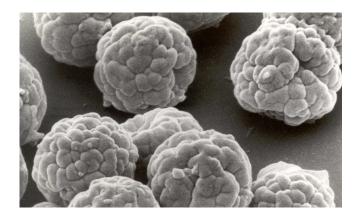
N.B: L'HbF e MetHb interfereriscono se >10% (torbidità aumentata)

Ricerca inclusi endoeritrocitari dopo incubazione a 37°C, a tempi crescenti, con Brilliant Cresyl Blue (Hb instabili)

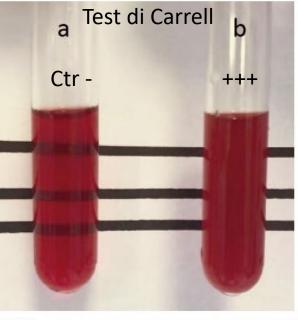
Inclusi eritrocitari «in vitro» (BCB test-microscopio ottico)


N.B: L'HbF e MetHb NON interferiscono

LIVELLO Diagnostico Intermedio: conferme e caratterizzazione funzionale


Metodo separativo alternativo
Test di falcizzazione
Ricerca di inclusi eritrocitari (BCB Test) a 37 °C
Test di termolabilità: instabilità "in vitro"
p50
Metaemoglobina (MetHb)

2° esame di conferma in presenza o assenza di HbX Negativo

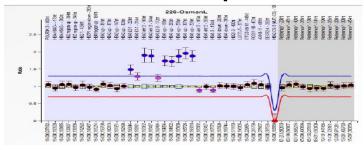

Presenza di eritrociti con inclusi in numero variabile Positività variabile a 37 °C in isopropanolo, o con test a 50 °C Valore diminuito con alta affinità e aumentato con bassa affinità Valori superiori all'1% nel 15-20% delle varianti

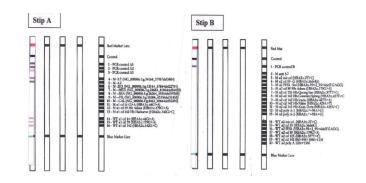
Inclusi eritrocitari «in vitro» (BCB test-microscopio ottico)

Inclusi eritrocitari «in vitro» (BCB test-microscopio elettronico)

Risultato del test per l'osservazione "in vitro" dell'instabilità dell'emoglobina a 37 °C con isopropanolo 17% (134): a) riscontro negativo (campione limpido) di un soggetto normale di controllo; b) riscontro positivo (campione torbido senza precipitati) di un soggetto portatore di Hb Torino.

2° LIVELLO Diagnostico: caratterizzazione molecolare del DNA o studio della catena globinica


- Multiplex Ligation Probe Amplification (MLPA): quando si sospetta la presenza di talassemie α o β da delezione associate ai difetti strutturali
- Sequenziamento (metodo Sanger): prevalentemente per la caratterizzazione di difetti talassemici e strutturali puntiformi dei geni globinici
- Next generation sequencing (NGS): procedura che consente di estendere lo studio anche ad altri geni non-globinici che possono condizionare l'espressione fenotipica delle varianti Hb
- Spettrometria di massa: quando è utile lo studio strutturale delle catene globiniche

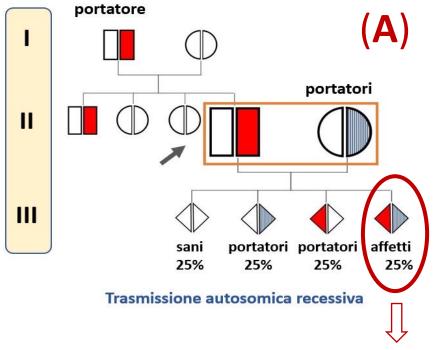

Sequenziamento NGS

Metodi elettivi per CNV

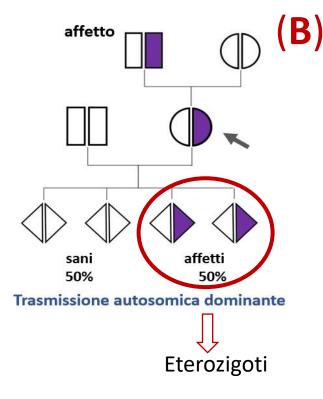
Conventional Molecular Approach

DNA SEQUENCING (Sanger):

- √ α genes
- √ β gene
- δgene
- √ γ genes

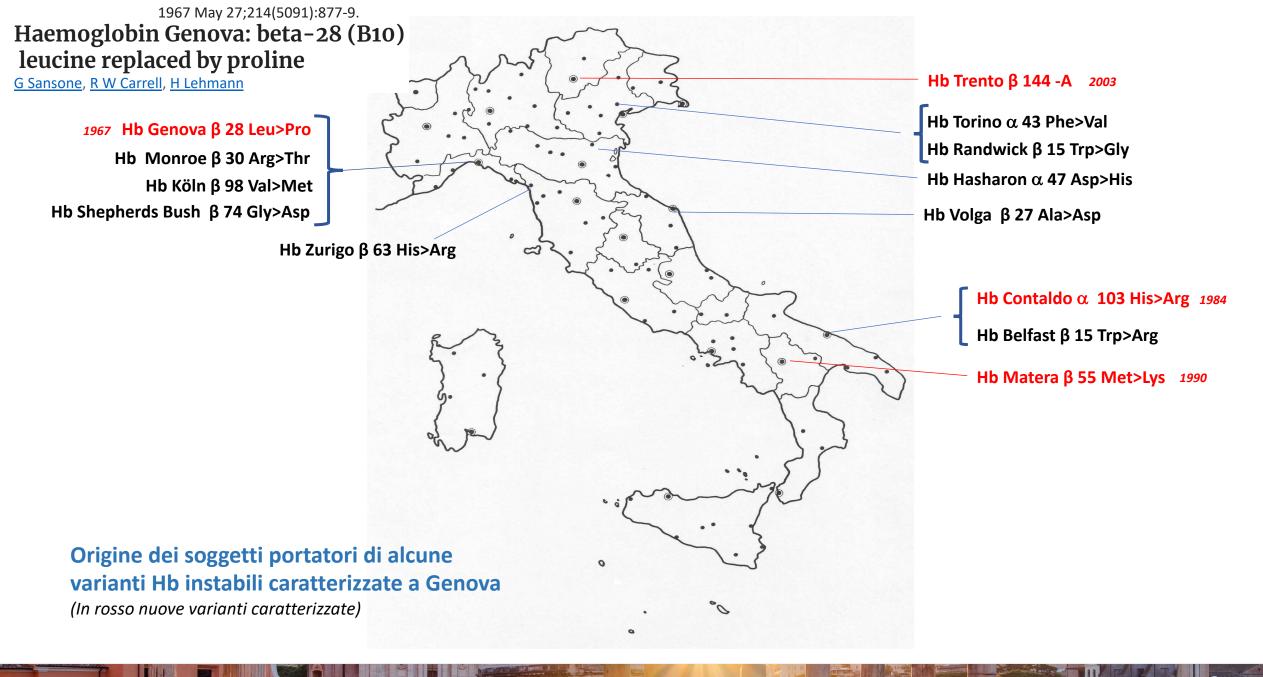

Caratteristiche generali

- ✓ Producono anemie di grado diverso e con modalità variabili.
- ✓ Possono presentarsi come difetti *de novo*.
- ✓ Si trasmettono con modalità dominante o recessiva.
- ✓ Talvolta producono fenotipi simil-talassemici, ma in presenza di altri difetti talassemici esprimono fenotipi variabili.
- √ L'esordio prevalente è nella prima infanzia ma dipende dai geni globinici coinvolti.
- ✓ Presentano corpi di Heinz evidenti soprattutto dopo splenectomia.
- ✓ Gli inclusi HbH like prodotti in vitro si presentano con caratteristiche qualitative e quantitative molto variabili.
- ✓ Sovente presentano alterata affinità per $l'O_2$.
- ✓ Generalmente non sono prevalenti o caratteristici in aree geografiche o etnie particolari.
- ✓ Sono considerati «difetti rari» e spesso non vengono riconosciute e risultano sottovalutate.


Approccio allo studio e alla diagnosi di laboratorio

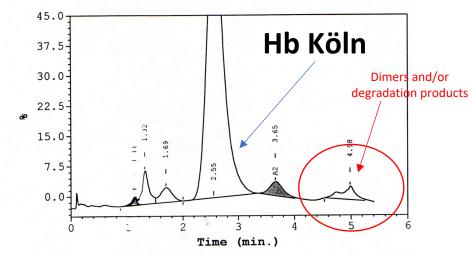
- ✓ Importante conoscere la storia clinica del paziente prima di iniziare il percorso di laboratorio.
- ✓ Necessario discriminare le diverse cause dell'emolisi con test dedicati.
- ✓ I test dedicati per le Hb instabili in generale non sono automatizzati e standardizzati.
- ✓ In molti casi i test separativi per L'Hb non consentono di evidenziare la presenza delle varianti instabili.
- ✓ I test funzionali devo essere eseguiti e interpretati in accordo con le indagini strutturali.
- √ L'esame molecolare è sempre necessario.

Trasmissione Genetica delle Emoglobinopatie

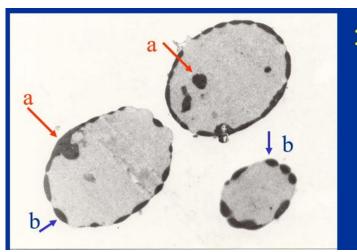


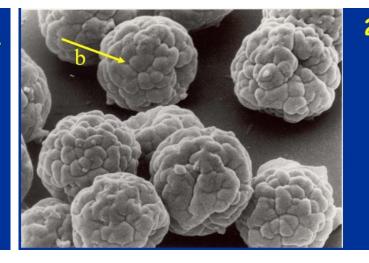
Composti eterozigoti oppure omozigoti

Nel caso dei difetti dell'emoglobina:


- (A) Es. trasmissione di difetti talassemici o di varianti strutturali (es. Beta Talassemia, Hb S)
- (B) Es. varianti instabili, iperinstabili, varianti ad alta affinità per l'O₂ (Hb Köln, Hb Cagliari, Hb Heathrow)

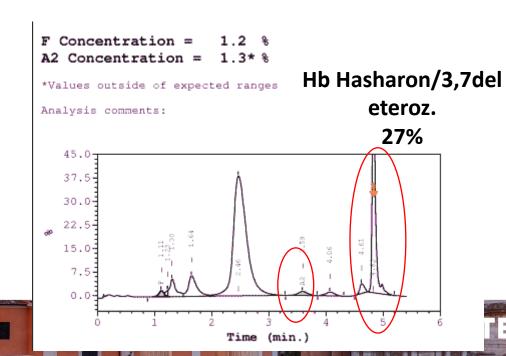
F Concentration = 0.9 % A2 Concentration = 3.5*%


*Values outside of expected ranges


Analysis comments:

- L'**Hb Köln** (anche chiamata Hb San Francisco (Pacific) e Hb Ube-1) è la variante instabile delle catene beta più frequentemente riscontrata.
- Hb Köln riscontrata in tutto il mondo in gruppi etnici differenti spesso come mutazione *de novo*.
- In eterozigosi è associata ad anemia emolitica moderata.
- L'affinità per l'O₂ è aumentata.
- Nei soggetti splenectomizzati si evidenziano Corpi di Heinz.
- Il test di Carrel risulta positivo.
- Caratterizzazione molecolare:

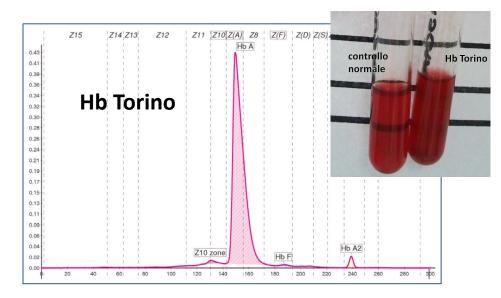
HBB:c.295G>A β98Val>Met

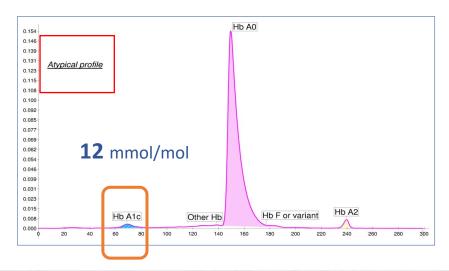


Globuli rossi in un soggetto splenectomizzato al microscopio elettronico:

- 1) trasmissione
- 2) scansione
- a) Corpi di Heinz
- b) Inclusi HbH like

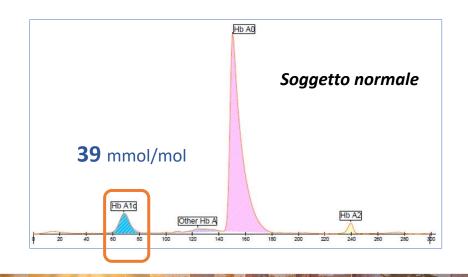
F Concentration = A2 Concentration = 1.7* %

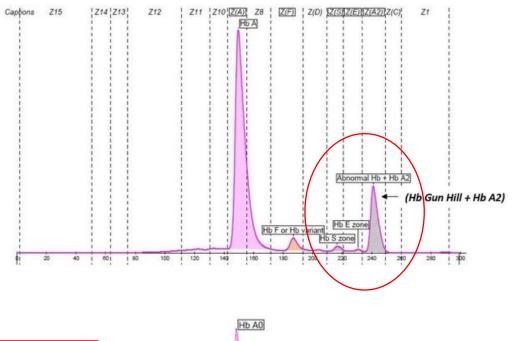

*Values outside of expected ranges **Hb Hasharon** Analysis comments: 20% 37.5 30.0 22.5 15.0 7.5 Time (min.)

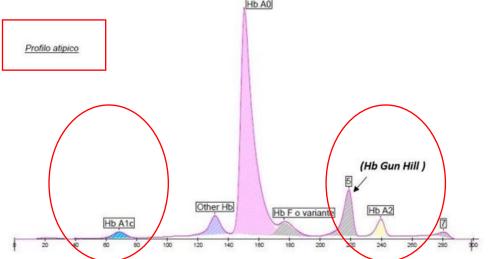

• L'**Hb Hasharon,** anche chiamata:

Hb L-Ferrara, Hb Michigan-I, Hb Michigan-II, Hb Sealy, Hb Sinai è la variante instabile delle catene alfa più frequentemente riscontrata.

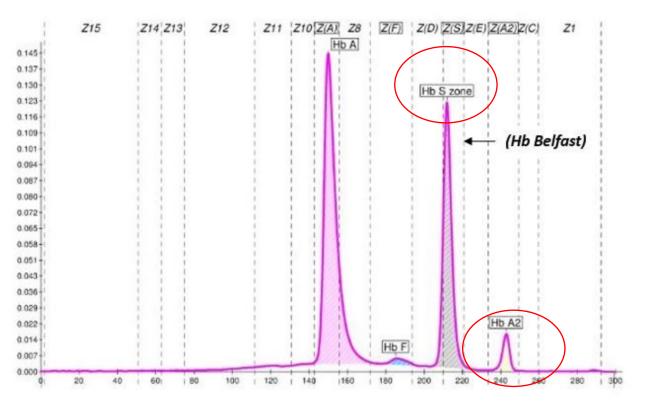
- Descritta per la prima volta in famiglie di ebrei ashkenaziti in Israele, poi in Lituania, negli Stati Uniti , in Italia nel Polesine (Ferrara e Rovigo) con prevalenza 0,8%.
- In eterozigosi è associata ad una lieve anemia emolitica nell'adulto ed espressa con una parcentuale di circa il 15-20%. Si separa molto bene in CE e HPLC.
- Manifesta instabilità soprattutto durante lo sviluppo fetale, infatti il tetramero α2y2 risulta particolarmente instabile.
- In associazione ad alfa talassemia (spesso in cis con del3,7) la percentuale della HB Hasharon può aumentare fino al 30-50%.
- Il **test di Carrel** risulta **debolmente positivo**.
- Caratterizzazione molecolare: HBA2:c.142G>C α 47Asp>His


- ✓ HBA2:c.130T>G; α43(CE1)Phe>Val (Hb Torino) eterozigote
- ✓ NG_000006.1:g.34164_37967del3 804 (-3.7 kb (Type I) eterozigote))


La sopravvivenza eritrocitaria diminuita in soggetti con Hb instabili comporta una misura anomala dell'Hb A_{1c} rilevabile con i metodi dedicati.

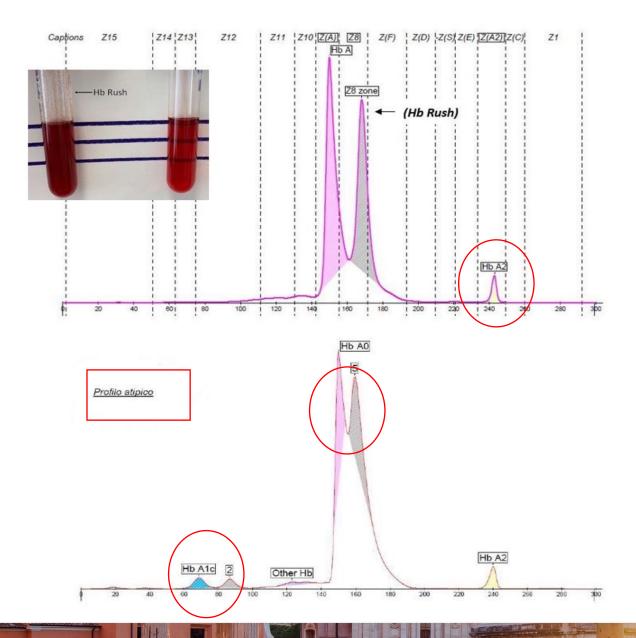

I metodi separativi utilizzati per la determinazione dell'Hb A_{1c} forniscono valori di Hb A_2 non standardizzati e non possono pertanto essere considerati di riferimento per lo screening delle emoglobinopatie. Tuttavia possono dare importanti indicazioni sulla presenza di varianti Hb.

- L'Hb Torino ha affinità diminuita per l'ossigeno.
- L'anemia emolitica è presente solamente in associazione ad alfa talassemia.


Caso 1

- L'Hb Gun Hill è una variante delle catene beta associata a lieve emolisi compensata. La catena $\beta^{\text{Gun Hill}}$ presenta una delezione di cinque aminoacidi tra i codoni 91 e 95. Ciò comporta una instabilità che si accompagna alla tendenza a formare dimeri che si separano a pH diverso. La delezione comprende l'His prossimale che lega l'eme in posizione 92 che porta ad una affinità aumentata per l'O₂.
- Non è determinabile l'HbA₂.
- Il paziente di solito non presenta fenomeni emolitici particolari, ma non si possono escludere fenomeni emolitici cronici con ittero e splenomegalia.
- La variante presenta una **sopravvivenza eritrocitaria ridotta** ed è presente in quantità ridotta in circolo. Anche per questo motivo la misura dell'Hb A1_C deve considerarsi sottostimata.
- Il test di Carrel risulta positivo.
- Caratterizzazione molecolare:
 HBB:c.274_288delCTGCACTGTACAAG

Caso 2

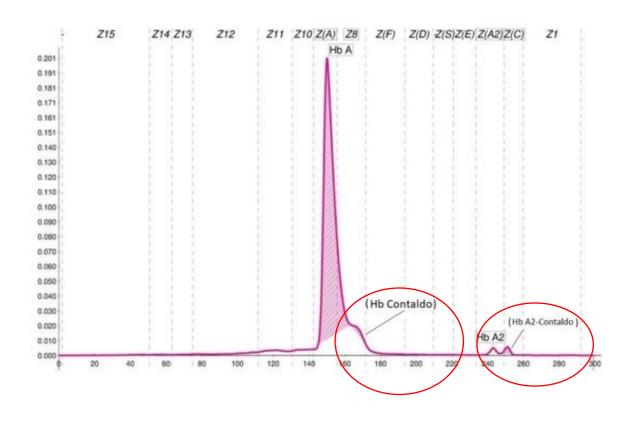


L'Hb Belfast è una variante instabile che si denatura sotto l'azione di sostanze o farmaci ossidanti con crisi emolitiche acute (Tipo 3). E' stata descritta con famiglie di etnia differenti.

- L'Hb A₂ presenta valori superiori alla norma come accade in diverse varianti instabili delle catene β.
- L'Hb Belfast si presenta in quantità normali per una beta variante, con valori ridotti durante le crisi emolitiche che si accompagnano a reticolocitosi, ittero e urine scure.
- L'osservazione della variante in «HbS zone», richiede in primo luogo di eseguire un test di sickling per escludere o confermare l'HbS; In questo caso il test di sickling risulta negativo.
- Il test di instabilità di Carrell è positivo.
- Ha affinità aumentata per l'O₂.
- Caratterizzazione molecolare: HBB:c.46T>A (p.Trp15Arg).

NB: Solo per HBB:c.20A>T (p.Glu7Val) (HbS) il test di sickling risulta positivo.

Caso 3



L'**Hb Rush** è una variante **leggermente instabile** che è stata descritta soprattutto in famiglie Afro-Americane ed Asiatiche.

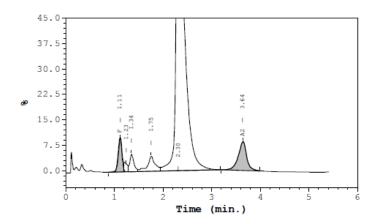
- Presenta un fenotipo clinico assimilabile alla talassemia intermedia quando viene ereditata con β talassemia o con HbE.
- Test di Carrell positivo, come mostrato.
- L'HbA₂ risulta aumentata.
- L' HbA1c non può essere quantificata per l'interferenza della variante con l'HbA, determinando la sottostima di entrambe le frazioni di riferimento.
- Caratterizzazione molecolare :

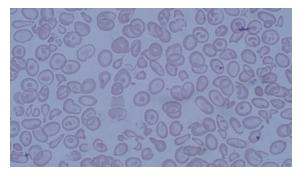
HBB:c.304G>C (p.Glu>101Gln)

Caso 4

L'Hb Contaldo allo stato eterozigote è una variante moderatamente instabile.

- Il caso mostrato è associata ad alfa talassemia che ne esalta l'espressione, il comportamento instabile e la ridotta sopravvivenza eritrocitaria.
- Come nel caso della Hb Torino, parenti senza alfa talassemia non presentano segni di emolisi.
- La sostituzione aminoacidica p.His103Arg modifica l'interazione $\alpha1\beta1$ e destabilizza anche le catene α libere inibendone il legame con la chaperonina specifica AHSP (proteina stabilizzante l' α -proteina)*.
- La variante **non si separa bene da HbA** e si presenta in quantità inferiore al 10%, significativamente basse nonostante l'alfa talassemia.
- L'HbA₂ risulta sdoppiata: L'Hb-A₂ Contaldo appare in quantità relativa simile all'Hb-A₂ normale, indicando una maggiore stabilià del tetramero $\alpha_2^{\text{Contaldo}}\delta_2$, rispetto al tetramero $\alpha_2^{\text{Contaldo}}\beta_2$.
- Caratterizzazione molecolare :
- HBA1:c.311A>G; α103(G10) His>Arg (Hb Contaldo) eterozigote
- NG_000006.1:g.34164_37967del3804 (-3,7 kb (Type I)) eterozigote


*(Harteveld et al. 2002; Vasseur-Godbillon et al. 2006; Giordano et al. 2007; Vasseur et al. 2009; Wajcman et al. 2008; Yu et al. 2009)

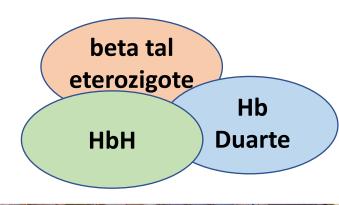

Caso 5 (presentato Site 2021 dalla Dr.ssa Quintino)

```
F Concentration = 4.1* % A2 Concentration = 8.6* %
```

*Values outside of expected ranges

Analysis comments:

Esame	Valori riscontrati	Unità di misura	Valori di riferimento
RBC	7,13	1012/L	4,13 – 5,15
Hb	109,00	g/L	125,00 – 155,00
нст	0,344	L/L	0,379 – 0,461
MCV	48,2	fL	81,8 – 95,3
MCH	15,3	pg	27,3 – 32,2


Hb Duarte 0.214 0.201 0.187 0.174 α catene libere 0.161 13 mmol/mol rispetto alla 0.147 norma (42-47 mmol/mol) 0.121 Hb Duarte glicata 0.094 Hb A2 Other Hb 0.027 Hb F or variant Hb A1c

Esame	Valori riscontrati	Unità di misura	Valori di riferimento
Reticolociti	2,3	%	0,6 - 2,1
Reticolociti assoluti	160,8	109/L	26,8 - 90,5
Indice di immaturità eritrocitaria	41,1	%	3,0 - 12,8
Bilirubina totale	1,15	mg/dl	0,1 - 1,0
Bilirubina diretta	0,41	mg/dl	0,1 - 0,3
Aptoglobina	1,00	mg/dl	30,0 - 200,0
Latticodeidrogenasi (LDH)	676	U/L	135 - 250
Sideremia	227	μg/dl	37 - 145
Transferrina	191	mg/dl	200 - 360
Ferritina	255,0	mg/dl	13,0 - 150,0

L'Hb Duarte è una variante instabile.

- Presenta un fenotipo clinico assimilabile alla talassemia intermedia quando viene ereditata con β talassemia.
- L'HbA₂ risulta aumentata.
- Ha affinità aumentata per l'ossigeno.
- L' HbA1c non può essere quantificata per l'interferenza della variante con l'HbA che è del tutto assente, determinando la sottostima di entrambe le frazioni di riferimento.
- Caratterizzazione molecolare :

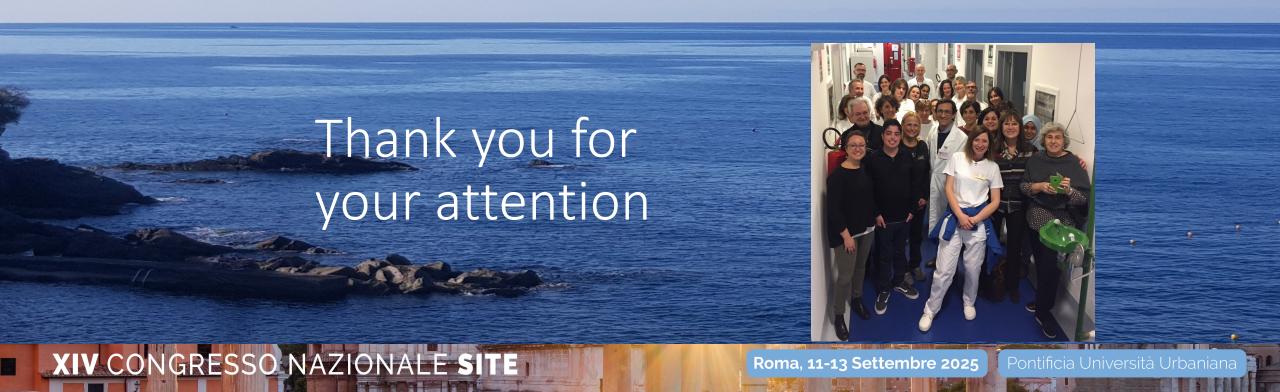
HBB:c.118C>Tp.(Gln39*)(Codon39)
HBB:c.187G>C (Ala62Pro) (Hb Duarte)
NG_000006.1:g.15164_37864del22701(--20.5kb)
NG_000006.1:g.34164_37967del3804 (-3.7kb)

Take home messages:

- ✓ Le varianti instabili **possono essere di qualsiasi tipo, ma si riescono a definire meglio le varianti instabili più espresse** quali le HBB, HBA2 e HBG2, che **evidenziano fenotipi clinici più marcati**.
- ✓ **Le varianti instabili possono indurre anemia emolitica cronica o acuta in seguito a stimoli chimici o fisici** che le fanno precipitare, danneggiando le membrane eritrocitarie, fino all'emolisi dell'eritrocita.
- ✓ **Sono rare, spesso si presentano «de novo», hanno una trasmissione prevalentemente dominante**, ed evidenziano un fenotipo più chiaro se in associazione con altri difetti talassemici che esitano in forme clinicamente più importanti.
- ✓ I test specifici per determinarle sono il Test di Carrel (isopropanolo), Test di Grimes (calore), Colorazione BCB, ma la caratterizzazione definitiva è sempre di tipo molecolare.
- Generalmente le varianti instabili β esordiscono dopo i 6 mesi dalla nascita fino al termine dello switch emoglobinico e possono causare anemie variabili in seguito ad emolisi croniche o acute. Le varianti α e γ possono dare fenotipi più definiti nell'ambito dello sviluppo fetale e primo anno di vita, e generalmente tendono ad attenuarsi dopo lo switch emoglobinico.
- ✓ La più frequente delle varianti instabili β è la **Hb-Köln**, mentre la più frequente variante instabile α è l' **Hb Hasharon** (che ha instabilità differente nel feto e nell'adulto).
- ✓ Le **varianti instabili interferiscono sul dosaggio dell'emoglobina glicata HbA1c**, per cui spesso sono identificate come «incidental findings».

Un ringraziamento particolare a:

Comitato Direttivo Site in particolare alla Dott.ssa Valeria Pinto


Dr. Giovanni Ivaldi

Dr. ssa Giuseppina Barberio

Dr. ssa Sabrina Quintino

Tutti i colleghi del Centro di Microcitemia dell'E.O.O. Galliera di Genova

Tutti i colleghi del Laboratorio di Genetica Umana, diretto dal Dr. Coviello, del IRCCS Giannina Gaslini di Genova

